31 research outputs found

    Unique Regulatory Properties of Mesangial Cells Are Genetically Determined in the Rat

    No full text
    Mesangial cells are glomerular cells of stromal origin. During immune complex mediated crescentic glomerulonephritis (Crgn), infiltrating and proliferating pro-inflammatory macrophages lead to crescent formation. Here we have hypothesised that mesangial cells, given their mesenchymal stromal origin, show similar immunomodulatory properties as mesenchymal stem cells (MSCs), by regulating macrophage function associated with glomerular crescent formation. We show that rat mesangial cells suppress conA-stimulated splenocyte proliferation in vitro, as previously shown for MSCs. We then investigated mesangial cell-macrophage interaction by using mesangial cells isolated from nephrotoxic nephritis (NTN)-susceptible Wistar Kyoto (WKY) and NTN-resistant Lewis (LEW) rats. We first determined the mesangial cell transcriptome in WKY and LEW rats and showed that this is under marked genetic control. Supernatant transfer results show that WKY mesangial cells shift bone marrow derived macrophage (BMDM) phenotype to M1 or M2 according to the genetic background (WKY or LEW) of the BMDMs. Interestingly, these effects were different when compared to those of MSCs suggesting that mesangial cells can have unique immunomodulatory effects in the kidney. These results demonstrate the importance of the genetic background in the immunosuppressive effects of cells of stromal origin and specifically of mesangial cell-macrophage interactions in the pathophysiology of crescentic glomerulonephritis

    Treatment of Mesanshimal Stem Cells (MSCs) with Peptidoglycan-LPS as TLR2,4 Agonist Augments Apoptose in Activated T Cells Time Dependently

    Get PDF
    Background & Objectives: MSCs can interact with cells of both the innate and adaptive immune systems which leads to the modulation of several effector mechanisms based on ability to moderate T-cell proliferation and function. Other reports mainly focused on the role of TLRs in stem cell proliferation and their potential role in disrupting the differentiation capabilities of the stem cells. In the present study invested the coestimolatory effect of peptidoglycan-lipopolysacarid TLR2,4 agonist on apoptosis induction in activated T cells by mouse mesanchymal stem cell (MSCs). Methods: MSCs were isolated from bone-marrow of mice and treated with peptidoglycan-LPS (10ng/ml) as TLR2, 4-agonist for different times (1h and 12h). Treated cells were co-cultured with PHA-activated splenic mononuclear cells (MNCs) for 72h at 37 °C in a humidified 5% CO2 . Apoptosis in activated T cells were then measured using Acridin-Orange/PI staining in flow cytometry. Results: We found that High term exposure (12h) of MSCs to TLR2,4 agonist (peptidoglycan-LPS) con significantly increase of apoptosis in activated T cells in comparison to control group. Conclusion: Our findings suggested that different exposure terms of MSCs to TLR2/4 agonist, differently affected apoptotic activity of MSCs against activated T cells, so, we concluded that TLR2/4 agonist treated MSCs could utilize for moderating the inflammatory reactions in autoimmune disorders

    Transdifferentiation of Human Dental Pulp Stem Cells Into Oligoprogenitor Cells

    Get PDF
    Introduction: The nerve fibers in central nervous system are surrounded by myelin sheet which is formed by oligodendrocytes. Cell therapy based on oligodendrocytes and their precursors transplantation can hold a promising alternative treatment for myelin sheet repair in demyelinating diseases. Methods: Human Dental Pulp Stem Cells (hDPSCs) are noninvasive, autologous and easy available source with multipotency characteristics, so they are in focus of interest in regenerative medicine. In the present study, hDPSCs were differentiated into oligoprogenitor using glial induction media, containing Retinoic Acid (RA), basic Fibroblast Growth Factor (bFGF), Platelet- Derived Growth Factor (PDGF), N2 and B27. The differentiated Oligoprogenitor Cells (OPCs) were evaluated for nestin, Olig2, NG2 and O4 using immunocytochemistry. Also, the expression of nestin, Olig2 and PDGFR-alpha gens (neuroprogenitor and oligoprogenitor markers) were investigated via RT-PCR technique. Results: The results indicate that glial differentiation medium induces the generation of oligoprogenitor cells as revealed via exhibition of specific glial markers, including Olig2, NG2 and O4. The expersion of nestin gene (neuroprogenitor marker) and Olig2 and PDGFR-alpha genes (oligoprogentor markers) were detected in treated hDPSCs at the end of the induction stage. Conclusion: hDPSCs can be induced to transdifferentiate into oligoprogenitor cells and respond to the routinely applied regents for glial differentiation of mesanchymal stem cells. These data suggest the hDPSCs as a valuable source for cell therapy in neurodegenerative diseases

    Self-Assembled Nanomicelles as Curcumin Drug Delivery Vehicles: Impact on Solitary Fibrous Tumor Cell Protein Expression and Viability

    Get PDF
    Solitary fibrous tumors (SFTs) are rare soft tissue sarcomas that rely on several epithelial-mesenchymal transition (EMT) protein regulators for invasion/metastatic progression. Curcumin (CUR) has several pharmacological activities, including anticancer activity and the ability to suppress the EMT process. However, poor absorption, rapid metabolism, and side effects at high doses limit the clinical applications of CUR. Here we present the results obtained by treating SFT cells with free CUR and three different CUR-loaded nanomicelles (NMs), each of which has its surface decorated with different ligands. All CUR-loaded NMs were more efficient in suppressing SFT cell viability and expression of EMT markers than CUR alone. Combined treatments with the pan-histone deacetylase dual inhibitor SAHA revealed a differential ability in inhibiting EMT markers expression and SFT cell invasiveness, depending on the NM-ligand type. Finally, combinations of photodynamic therapy and CUR-loaded NM administrations resulted in almost complete SFT cell viability abrogation 24 h after laser irradiation

    Swimming Exercise Prevents Fibrogenesis in Chronic Kidney Disease by Inhibiting the Myofibroblast Transdifferentiation

    Get PDF
    BACKGROUND: The renal function of chronic kidney disease (CKD) patients may be improved by a number of rehabilitative mechanisms. Swimming exercise training was supposed to be beneficial to its recovery. METHODOLOGY/PRINCIPAL FINDINGS: Doxorubicin-induced CKD (DRCKD) rat model was performed. Swimming training was programmed three days per week, 30 or 60 min per day for a total period of 11 weeks. Serum biochemical and pathological parameters were examined. In DRCKD, hyperlipidemia was observed. Active mesangial cell activation was evidenced by overexpression of PDGFR, P-PDGFR, MMP-2, MMP-9, α-SMA, and CD34 with a huge amount collagen deposition. Apparent myofibroblast transdifferentiation implicating fibrogenesis in the glomerular mesangium, glomerulonephritis and glomeruloscelorosis was observed with highly elevated proteinuria and urinary BUN excretion. The 60-min swimming exercise but not the 30 min equivalent rescued most of the symptoms. To quantify the effectiveness of exercise training, a physical parameter, i.e. "the strenuosity coefficient" or "the myokine releasing coefficient", was estimated to be 7.154 × 10(-3) pg/mL-J. CONCLUSIONS: The 60-min swimming exercise may ameliorate DRCKD by inhibiting the transdifferentiation of myofibroblasts in the glomerular mesangium. Moreover, rehabilitative exercise training to rescue CKD is a personalized remedy. Benefits depend on the duration and strength of exercise, and more importantly, on the individual physiological condition

    Emerging roles of extracellular vesicle-associated non-coding RNAs in hypoxia: Insights from cancer, myocardial infarction and ischemic stroke

    Get PDF
    Hypoxia is a central pathophysiological component in cancer, myocardial infarction and ischemic stroke, which represent the most common medical conditions resulting in long-term disability and death. Recent evidence suggests common signaling pathways in these diverse settings mediated by non-coding RNAs (ncRNAs), which are packaged in extracellular vesicles (EVs) protecting ncRNAs from degradation. EVs are a heterogeneous group of lipid bilayer-covered vesicles released from virtually all cells, which have important roles in intercellular communication. Recent studies pointed out that ncRNAs including long non-coding RNAs (IncRNAs) and microRNAs (miRNAs) are selectively sorted into EVs, modulating specific aspects of cancer development, namely cell proliferation, migration, invasion, angiogenesis, immune tolerance or drug resistance, under conditions of hypoxia in recipient cells. In myocardial infarction and stroke, ncRNAs shuttled via EVs have been shown to control tissue survival and remodeling post-hypoxia by regulating cell injury, inflammatory responses, angiogenesis, neurogenesis or neuronal plasticity. This review discusses recent evidence on EV-associated ncRNAs in hypoxic cancer, myocardial infarction and stroke, discussing their cellular origin, biological function and disease significance. The emerging concept of IncRNA-circular RNA/ miRNA/ mRNA networks is outlined, upon which ncRNAs synergistically respond to hypoxia in order to modify disease responses. Particular notion is given to ncRNAs participating in at least two of the three conditions, which revealed a large degree of overlaps across pathophysiological conditions. Possible roles of EV-ncRNAs as therapeutic products or theranostic markers are defined

    Development of the germinal ridge and ovary in the African elephant (Loxodonta africana)

    Get PDF
    The follicular reserve and its ontogeny in the elephant are of interest because elephants have the longest reproductive life of all land-based mammals. They also have the longest recorded pregnancy which allows a protracted view of the series of significant events involved in the development of the embryonic and fetal gonads. The large elephant population of Zimbabwe provided the opportunity to collect conceptuses from elephants culled for management reasons and hunted professionally. Five embryos aged 76–96 days and the ovaries of four fetuses aged 4.8–11.2 months were fixed in 4% buffered formalin and studied by conventional histological sectioning and a stereological protocol to calculate the follicle reserve of each fetus. These observations enabled the conclusion that the migration of primordial germ cells into the indifferent gonad terminates at around 76 days of gestation while entry of oogonia into meiosis along with first follicle formation starts at around 5 months. Peak numbers of follicles are present by mid-gestation towards the end of the 6 month mitotic-meiotic transition period. It appears that the cortex of the elephant fetal ovary at mid-gestation (11 months) has already reached a developmental stage exhibited by the ovaries of many other mammals at full term.China Wildlife Conservation Association and the National Research Foundation of South Africa.http://www.reproduction-online.org.hb2013ab201
    corecore